Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pathogen resistance may be the principal evolutionary advantage provided by the microbiome.

Identifieur interne : 000015 ( Main/Exploration ); précédent : 000014; suivant : 000016

Pathogen resistance may be the principal evolutionary advantage provided by the microbiome.

Auteurs : Michael R. Mclaren [États-Unis] ; Benjamin J. Callahan [États-Unis]

Source :

RBID : pubmed:32772671

Abstract

To survive, plants and animals must continually defend against pathogenic microbes that would invade and disrupt their tissues. Yet they do not attempt to extirpate all microbes. Instead, they tolerate and even encourage the growth of commensal microbes, which compete with pathogens for resources and via direct inhibition. We argue that hosts have evolved to cooperate with commensals in order to enhance the pathogen resistance this competition provides. We briefly describe competition between commensals and pathogens within the host, consider how natural selection might favour hosts that tilt this competition in favour of commensals, and describe examples of extant host traits that may serve this purpose. Finally, we consider ways that this cooperative immunity may have facilitated the adaptive evolution of non-pathogen-related host traits. On the basis of these observations, we argue that pathogen resistance vies with other commensal-provided benefits for being the principal evolutionary advantage provided by the microbiome to host lineages across the tree of life. This article is part of the theme issue 'The role of the microbiome in host evolution'.

DOI: 10.1098/rstb.2019.0592
PubMed: 32772671
PubMed Central: PMC7435163


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pathogen resistance may be the principal evolutionary advantage provided by the microbiome.</title>
<author>
<name sortKey="Mclaren, Michael R" sort="Mclaren, Michael R" uniqKey="Mclaren M" first="Michael R" last="Mclaren">Michael R. Mclaren</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Callahan, Benjamin J" sort="Callahan, Benjamin J" uniqKey="Callahan B" first="Benjamin J" last="Callahan">Benjamin J. Callahan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32772671</idno>
<idno type="pmid">32772671</idno>
<idno type="doi">10.1098/rstb.2019.0592</idno>
<idno type="pmc">PMC7435163</idno>
<idno type="wicri:Area/Main/Corpus">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000011</idno>
<idno type="wicri:Area/Main/Curation">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000011</idno>
<idno type="wicri:Area/Main/Exploration">000011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pathogen resistance may be the principal evolutionary advantage provided by the microbiome.</title>
<author>
<name sortKey="Mclaren, Michael R" sort="Mclaren, Michael R" uniqKey="Mclaren M" first="Michael R" last="Mclaren">Michael R. Mclaren</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Callahan, Benjamin J" sort="Callahan, Benjamin J" uniqKey="Callahan B" first="Benjamin J" last="Callahan">Benjamin J. Callahan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To survive, plants and animals must continually defend against pathogenic microbes that would invade and disrupt their tissues. Yet they do not attempt to extirpate all microbes. Instead, they tolerate and even encourage the growth of commensal microbes, which compete with pathogens for resources and via direct inhibition. We argue that hosts have evolved to cooperate with commensals in order to enhance the pathogen resistance this competition provides. We briefly describe competition between commensals and pathogens within the host, consider how natural selection might favour hosts that tilt this competition in favour of commensals, and describe examples of extant host traits that may serve this purpose. Finally, we consider ways that this cooperative immunity may have facilitated the adaptive evolution of non-pathogen-related host traits. On the basis of these observations, we argue that pathogen resistance vies with other commensal-provided benefits for being the principal evolutionary advantage provided by the microbiome to host lineages across the tree of life. This article is part of the theme issue 'The role of the microbiome in host evolution'.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32772671</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>375</Volume>
<Issue>1808</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos Trans R Soc Lond B Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Pathogen resistance may be the principal evolutionary advantage provided by the microbiome.</ArticleTitle>
<Pagination>
<MedlinePgn>20190592</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2019.0592</ELocationID>
<Abstract>
<AbstractText>To survive, plants and animals must continually defend against pathogenic microbes that would invade and disrupt their tissues. Yet they do not attempt to extirpate all microbes. Instead, they tolerate and even encourage the growth of commensal microbes, which compete with pathogens for resources and via direct inhibition. We argue that hosts have evolved to cooperate with commensals in order to enhance the pathogen resistance this competition provides. We briefly describe competition between commensals and pathogens within the host, consider how natural selection might favour hosts that tilt this competition in favour of commensals, and describe examples of extant host traits that may serve this purpose. Finally, we consider ways that this cooperative immunity may have facilitated the adaptive evolution of non-pathogen-related host traits. On the basis of these observations, we argue that pathogen resistance vies with other commensal-provided benefits for being the principal evolutionary advantage provided by the microbiome to host lineages across the tree of life. This article is part of the theme issue 'The role of the microbiome in host evolution'.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McLaren</LastName>
<ForeName>Michael R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Callahan</LastName>
<ForeName>Benjamin J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R35 GM133745</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">colonization resistance</Keyword>
<Keyword MajorTopicYN="Y">commensal bacteria</Keyword>
<Keyword MajorTopicYN="Y">defensive symbionts</Keyword>
<Keyword MajorTopicYN="Y">evolution of immunity</Keyword>
<Keyword MajorTopicYN="Y">host–microbiome interactions</Keyword>
<Keyword MajorTopicYN="Y">microbiome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32772671</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2019.0592</ArticleId>
<ArticleId IdType="pmc">PMC7435163</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Cell Infect Microbiol. 2017 Sep 05;7:387</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28929087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Apr 04;10:581</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31019492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2019 Jan;42(1):41-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29808564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2020 Feb;14(2):635-648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31740752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2019 Oct;25(10):1500-1504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31591599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Jun 21;366(25):2333-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22716973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2017 Dec 07;8:1678</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29270167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2018 Mar;16(3):143-155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29332945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2011 Dec;121(12):4610-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22133886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2016 Oct;24(10):833-845</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27546832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Sep 24;6:8413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26400552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):776-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Jul 13;20(13):1222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20619820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Jan 11;363(6423):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30630899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Ecol Evol Syst. 2019 Nov;50(1):451-475</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32733173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2002 Oct;160 Suppl 4:S9-S22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Jul;23(7):577-587</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29753631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2017 Aug 4;55:355-375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28598721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2018 Nov;93(4):1747-1764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29663622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Oct 26;362(6413):453-457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30361372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 31;5:578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25400647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2015 May 1;194(9):4081-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2019 Jun 3;29(11):R521-R537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31163166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mucosal Immunol. 2019 Jan;12(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29988120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2016 Apr 13;19(4):550-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27053168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 1977 Oct;12(2):197-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">929457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2015;69:145-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26195303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Nov 15;7:13430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27845328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 8;336(6086):1255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22674335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterol Rep (Oxf). 2019 Feb;7(1):3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30792861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Sep 23;467(7314):426-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20864996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10771-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23690590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2019 Jun 12;25(6):803-814.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31175044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2014 Nov;22(11):607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25124464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2019 May 1;366(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31132110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2012 Jun 25;12(7):503-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22728527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013;11(8):e1001631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23976878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 06;115(6):E1157-E1165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29358405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2016;61:239-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26667271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Sep 12;5:479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25309519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Insect Sci. 2014 Oct;4:8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28043411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Jan;23(1):25-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29050989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Appl Microbiol. 2004;56:89-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15566977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2007 Nov;92(4):367-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Dec 08;7:1936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1196):459-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2905487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2007 Apr;19(2):106-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2009 Feb;2(1):32-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 May 11;292(5519):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2017 Sep;279(1):70-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28856738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2018 Apr 26;6(1):79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29695286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1983 Feb;39(2):676-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6339388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Feb 04;12(2):e1001783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24504482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2018 Mar 27;6(1):58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29587885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2014 Aug;29:16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24727150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Gastroenterol Hepatol. 2018 Apr;15(4):197-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29362469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Oct 24;16(20):2048-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17055985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Feb 21;494(7437):353-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23426324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 May 26;356(6340):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28546156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 May 20;465(7296):346-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20485435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2010 Dec;12(12):1691-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20964797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2019 Jun 27;11(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31252683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24445449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2015 Mar;17(3):173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25637951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2010 Jan 7;277(1678):123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):E3730-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24003149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Dis Primers. 2016 Apr 07;2:16020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27158839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Nov 15;9:2732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30498482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Oct 25;14(10):e1007310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30359456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 29;109(22):8618-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22529384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Sep;68(9):4383-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Aug 2;548(7665):43-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28770836</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Mclaren, Michael R" sort="Mclaren, Michael R" uniqKey="Mclaren M" first="Michael R" last="Mclaren">Michael R. Mclaren</name>
</region>
<name sortKey="Callahan, Benjamin J" sort="Callahan, Benjamin J" uniqKey="Callahan B" first="Benjamin J" last="Callahan">Benjamin J. Callahan</name>
<name sortKey="Callahan, Benjamin J" sort="Callahan, Benjamin J" uniqKey="Callahan B" first="Benjamin J" last="Callahan">Benjamin J. Callahan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000015 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000015 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32772671
   |texte=   Pathogen resistance may be the principal evolutionary advantage provided by the microbiome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32772671" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020